1/2t^2-49=0

Simple and best practice solution for 1/2t^2-49=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2t^2-49=0 equation:



1/2t^2-49=0
Domain of the equation: 2t^2!=0
t^2!=0/2
t^2!=√0
t!=0
t∈R
We multiply all the terms by the denominator
-49*2t^2+1=0
Wy multiply elements
-98t^2+1=0
a = -98; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-98)·1
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{2}}{2*-98}=\frac{0-14\sqrt{2}}{-196} =-\frac{14\sqrt{2}}{-196} =-\frac{\sqrt{2}}{-14} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{2}}{2*-98}=\frac{0+14\sqrt{2}}{-196} =\frac{14\sqrt{2}}{-196} =\frac{\sqrt{2}}{-14} $

See similar equations:

| 21=4a-7a | | 7x+7(3x-2)=182 | | v/2+7=3 | | x/5+5=3+x | | -6a+9=8+11a | | 4=7-3(4t-1) | | 3+7y=-5y-21 | | 7x/12=5 | | 6+14x=14x+14 | | -.50(8b+3)+3b=0 | | -4-7b=-5b-16 | | 4x^2-27x-35=0 | | 10-a/6=18 | | 2(v-1)=12 | | 21-h-15;h=6 | | 10x=10= | | 1/6x+2/3=1/4x+1/2 | | -9-x=14 | | 2(v-11)=12 | | -2-m=4 | | 2v(v-1)=12 | | x+7-7=17-7 | | -2(x-6)-(8x-7)=-11x | | 14=6v+2 | | -10=y-15 | | 5x+1+3x+1=8 | | -1/2(8b+3)+3b=0 | | -2=y/8+1 | | 7x-4=4(x=3) | | (x/2)+5=15 | | -13=s-28 | | 7(x+5)=2+6x |

Equations solver categories